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A simple algebraic expression is used to calculate the

structure-factor amplitudes of the anomalous scatterers within

a protein crystal, using X-ray diffraction measurements made

at two wavelengths and given a single type of anomalous

scatterer within the crystal. The expression is exact and is

readily derived from the standard algebraic equations for

analyzing multi-wavelength anomalous diffraction data.

Evaluation of the expression requires estimates for �f 0 and
�f 00, the real and imaginary components of the anomalous

scattering, respectively. When these are not known at the

wavelengths in question, a statistical procedure is suggested,

applicable when the crystal space group has centrosymmetric

projections, which allows the expression to be used regardless.

The method may provide a useful alternative to existing

procedures when �f 0 and �f 00 are unknown or when data have

been measured at a limited number of wavelengths.
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1. Introduction

In crystallographic phase determination using the multi-

wavelength anomalous diffraction (MAD) method, the initial

problem is to locate the positions of the anomalous scatterers

within the crystal. Usually this is performed by interpreting a

Patterson synthesis or by using a direct-methods procedure. In

either case, estimates for the structure-factor amplitudes of

the anomalous scatterers are required.

The theoretical and practical aspects of MAD have been

reviewed elsewhere (Hendrickson & Ogata, 1997; Rama-

krishnan & Biou, 1997; Fourme et al., 1996; Hendrickson, 1991;

Karle, 1989a). The practical consequences of anomalous

scattering are that re¯ections with indices +h and ÿh (Friedel

pairs) have differing amplitudes. Additionally, the amplitude

of any given re¯ection (+h or ÿh) is wavelength-dependent.

Hence, in a dual-wavelength experiment, for a general

re¯ection with index h there are four different experimentally

measurable quantities |�1 F(+)|, |�1 F(ÿ)|, |�2 F(+)|, |�2 F(ÿ)|

(Fig. 1). These quantities would all be identical in the absence

of anomalous scattering.

In protein crystallography, there are usually a large number

of atoms within the crystal for which the anomalous scattering

is negligible and a very few atoms of a single type for which the

anomalous scattering is signi®cant. In this case, it is useful to

partition the total structure factor into two components, one

arising from the normal scatterers (N) within the crystal and

the other from the anomalous scatterers (A). Hence, a vector

equation can be written,

�F � �FN � �FA: �1�
Wavelength-dependent quantities are denoted with the

superscript � and wavelength-independent quantities with the
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superscript �. Given that the signi®cant anomalous scatterers

within the crystal are of a single type, the wavelength-

dependent structure factor can be further expanded in terms

of the components of the scattering factor of the anomalously

scattering group (�f , �f 0, �f 00),

�F � �FN � �FA 1�
�f 0

�f
� i

�f 00

�f

� �
: �2�

The situation is shown geometrically in Fig. 1. �FA is the

contribution from the normal scattering component of the

anomalously scattering atoms. It is the quantities |�FA|, the

wavelength-independent structure-factor amplitudes of the

anomalous scatterers, that we wish to estimate. If these are

known, then the positions of the anomalous scatterers can

generally be determined and phases calculated for the

diffraction data using standard procedures.

Some early approaches to the problem were those of Okaya

et al. (1955) and Rossmann (1961) and are applicable even

when only single-wavelength measurements have been made.

In particular, Rossmann (1961) in essence suggested

�f 00

�f

� �
j�FAj

� �2

' 1

4
j�F���j ÿ j�F�ÿ�j� �2 �3�

and used these terms as the coef®cients of a Patterson

synthesis. This approximation (discussed from varying

perspectives by Kartha & Parthasarathy, 1965; Karle, 1980;

Cascarano & Giacovazzo, 1984) is still frequently used to

determine the positions of anomalous scatterers in protein

crystals (see, for example, Howell et al., 2000).

When diffraction measurements have been made at more

than one wavelength, it is possible in principle to determine

|�FA| without approximation. The standard algebraic equa-

tions for analyzing MAD data were formulated by Karle and

Hendrickson (see Karle, 1980, 1989b). A well known least-

squares method which determines |�FA| is based directly on

this algebraic analysis and is implemented in the program

MADLSQ (Hendrickson & Ogata, 1997). Another analytical

method was described by Fan et al. (1993) (see also Woolfson

et al., 1997) and is implemented in the program REVISE

within the CCP4 program suite (Collaborative Computational

Project, Number 4, 1994). Terwilliger (1994) describes a

Bayesian statistical procedure for estimating |�FA|, which has

been implemented in the program SOLVE (Terwilliger &

Berendzen, 1999).

In this paper, a simple algebraic expression is used to

calculate |�FA| given X-ray diffraction measurements made at

two wavelengths and a single type of anomalous scatterer

within the crystal. The expression is exact and is readily

derived by explicit solution for |�FA| of the standard algebraic

equations for analyzing MAD data. The expression was ®rst

derived by Singh & Ramaseshan (1968a) in a paper that was

primarily concerned with neutron anomalous scattering.

However, their analysis is general and is equally applicable to

the X-ray case. This approach to the estimation of |�FA|

provides a straightforward alternative to the approximation

introduced by Rossmann (1961) or the elegant but more

complicated least-squares procedure implemented in

MADLSQ (Hendrickson & Ogata, 1997). When �f 0 and �f 00

are not known at the wavelengths in question but the space

group of the crystal has centrosymmetric projections, it is

shown how the expression of Singh & Ramaseshan can still be

used. The general approach taken is similar to earlier proce-

dures for combining information from isomorphous replace-

ment and anomalous scattering to locate anomalously

scattering heavy atoms in protein derivatives (Kartha &

Parthasarathy, 1965; Matthews, 1966; Singh & Ramaseshan,

1966).

It is emphasized that throughout this paper the anomalous

corrections (�f 0, �f 00) to the normal atomic scattering factor

(�f ) are treated as isotropic and independent of the scattering

angle and are considered dependent on the wavelength alone.

2. Theory

2.1. An exact expression for |�FA| given dual-wavelength
X-ray diffraction measurements

The starting point for the method is the basic equation

expressing the diffracted intensity from a crystal with one

predominant type of anomalous scatterer. This can be written

j�F���j2 � j�FNj2 � 1� 2
�f 0

�f
� �

�
f 02 � �f 002�
�f 2

� �
j�FAj2

� 2 1�
�f 0

�f

� �
j�FNjj�FAj cos���N ÿ ��A�

� 2
�f 00

�f

� �
j�FNjj�FAj sin���N ÿ ��A�: �4�

This equation can be readily obtained by multiplying the

vector expression for �F (2) by its complex conjugate. Karle

(1989b) summarizes various other ways of writing the exact

algebraic equations for analyzing MAD data, which are all

mathematically equivalent. For a re¯ection with index �h,

each wavelength provides two equations relating the unknown

quantities. A two-wavelength experiment gives rise to four

equations of this type, which is enough in principle to allow

evaluation of all the unknowns.

With a suitable choice of unknowns [j�FNj2, j�FAj2,

j�FNjj�FAj cos���N ÿ ��A� and j�FNjj�FAj sin���N ÿ ��A�], the

system of equations becomes linear and can be solved by least-

squares methods for these quantities. This was Karle's

preferred method of solution and was subsequently imple-

mented by Hendrickson and coworkers in the program

MADLSQ (although they use a related system of equations

involving j�FT j and j�FAj).

Karle (1980) also indicated the possibility of solving such a

system of equations explicitly for j�FAj by eliminating the

unknown quantities j�FNj, cos���N ÿ ��A� and sin���N ÿ ��A�,
but did not develop this idea further. If this is performed, then

a quadratic equation emerges, a result that was ®rst given by

Singh & Ramaseshan (1968a). The starting point of their

derivation, allowing for the very different notation they use, is



seen to be the equations (4) written for two different wave-

lengths.

Explicit solution of these equations for j�FAj gives the

following result

A
�2 f 00

�f

� �
j�FAj

� �4

� B
�2 f 00

�f

� �
j�FAj

� �2

� C � 0; �5�

where

A � k4
2 � 2k2

2�1� k2
1� � �k2

1 ÿ 1�2;
B � ÿk2

2��1 Isum � �2 Isum� ÿ �k2
1 ÿ 1���1 Isum ÿ �2 Isum�;

C � 1

4
��1 Isum ÿ �2 Isum�2 �

k2
2

8
��2 Idiff�2 �

��1 Idiff�2
k2

1

� �
and

k1 �
�1 f 00

�2 f 00
;

k2 �
�1 f 0 ÿ �2 f 0

�2 f 00
;

�Isum � j�F���j2 � j�F�ÿ�j2;
�Idiff � j�F���j2 ÿ j�F�ÿ�j2:

(5) de®nes j�FAj in terms of the four experimentally measured

quantities j�1 F���j, j�1 F�ÿ�j, j�2 F���j and j�2 F�ÿ�j and the

components of the scattering factor of the anomalously scat-

tering group (�f , �f 0, �f 00). Singh & Ramaseshan (1968a)

present this result in a slightly different form and provide a full

proof, which is not repeated here.

The use of this expression in protein crystallography was

suggested by Klop et al. (1989a) as part of a proposal for the

estimation of triplet invariants from MAD data. An alge-

braically equivalent expression can be developed involving

ratios of the experimentally measured quantities instead of

sums and differences (Klop et al., 1989b). (5) is applicable to

both the centric and acentric re¯ections, although in the

centric case [where j�F���j � j�F�ÿ�j � j�Fj] some simpli®-

cation is possible (Singh & Ramaseshan, 1968b).

Since (5) is quadratic in [(�2 f 00/�f )j�FAj]2 there are two

possible solutions, which are given by

X� �
ÿB

2A
� �B

2 ÿ 4AC�1=2

2A
: �6�

Recalling that the values of the coef®cients A, B and C are

determined from the X-ray diffraction data, with unreliable

data or unreasonable values for k1 and k2 the term B2 ÿ 4AC

may be negative and there will be no real solutions to the

equation. However, in general the problem is to select the

correct solution from two positive alternatives. This presents

little practical dif®culty. Referring to Fig. 1, for the acentric

re¯ections the correct solution depends on the phase differ-

ence between �FN and �FT . The lower solution (Xÿ) is relevant

when j��N ÿ ��T j < 90�, while the upper solution (X+) is

relevant when j��N ÿ ��T j > 90�. Normally, the average value

of j�FAj is much smaller than that of j�FNj. Simple heuristic

arguments, similar to those made by Dodson & Vijayan (1971)

in the related case of isomorphous replacement, show that the

lower solution will correspond to the true value of

[(�2 f 00/�f )j�FAj]2 in almost all cases. For the centric re¯ections,

it can be shown by a different argument (Singh & Ramase-

shan, 1968b) that the lower solution will again usually be the

correct choice.

It is worth considering the selection of the wavelengths of

the X-ray diffraction data to be used in the calculation.

Clearly, data collected at wavelengths on the low-energy side

of the X-ray absorption edge should not be used, since here
�f 00, the imaginary part of the anomalous scattering factor, will

be close to its minimum value. Additionally, it seems that the

two wavelengths should be chosen so that the variation in �f 0,
the real part of the anomalous scattering factor, is large. The

optimal choice of wavelengths for phase determination in the

dual-wavelength experiment has been discussed by GonzaÁ lez

et al. (1999), whose results are consistent with earlier predic-

tions (see, for example, Phillips & Hodgson, 1980; Narayan &

Ramaseshan, 1981; Fan et al., 1993)

A general problem with all algebraic methods for esti-

mating j�FAj is that measurement errors may give rise to a few
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Figure 1
Geometric relationships in the complex plane between structure factors
with indices +h and ÿh measured at two wavelengths. The ®gure is only
representative when the crystal contains a single type of anomalous
scatterer. Vectors in red derive from normal diffraction alone and are
independent of the wavelength. Vectors in green show the effect of
anomalous scattering. Vectors in blue are the resultant (experimentally
measured) quantities. To emphasize the geometric relationship between
re¯ections and make comparison of magnitudes easier, the complex
conjugates of �1 F�ÿ� and �2 F�ÿ� are shown [�1 F��ÿ� and �2 F��ÿ�,
respectively]. This corresponds to re¯ection of these vectors across the
real (horizontal) axis. As represented in the ®gure, �f 0 is negative, which is
the situation for most elements at wavelengths useful for protein
crystallography. Here and throughout this paper, N denotes contributions
from the normally scattering atoms, A denotes contributions from the
anomalously scattering atoms and T denotes the total diffraction.
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large and completely discordant estimates (upper outliers).

Although such outliers are usually readily identi®ed, failure to

detect and remove them from a data set can have catastrophic

consequences for direct-methods or Patterson-based proce-

dures for locating the anomalous scatterers. A completely

robust method for detecting outliers has not yet been devised.

2.2. Estimating k1
2 and k2

2 from the X-ray diffraction data

At wavelengths close to an X-ray absorption edge, where

MAD data are usually collected, the anomalous scattering

factors are poorly described by theory. �f 0 and �f 00 can in

principle be obtained from analysis of the X-ray absorption

spectra of the crystal (see, for example, Hendrickson et al.,

1988; Evans & Wilson, 1999). However, the rapid change in

the anomalous signal close to an X-ray absorption edge

requires that the wavelength can be precisely and repro-

ducibly selected. This may not be realised in practice. There-

fore, we consider how to proceed when �f 0 and �f 00 are not

known from experiment or have been estimated only crudely.

In this case (5) cannot be used to directly determine

j�FAj. However, it suf®ces to estimate k2
1 = (�1 f 00/�2 f 00)2 and

k2
2 = [(�1 f 0 ÿ �2 f 0)/�2 f 00]2, since these ratios contain all the

required unknown terms. Since �f 0 and �f 00 are assumed to

be isotropic and resolution-independent, k2
1 and k2

2 are

simple scalar quantities. In the following arguments, we

assume that data at the two wavelengths have been put on a

common scale. It is noted, however, that the determination

of the relative scale factor between data collected at

different wavelengths and the determination of k2
1 and k2

2

are not strictly separable problems and that a completely

rigorous solution to the scaling problem is not currently

available (see Karle, 1984 for discussion).

It is readily shown (see e.g. Singh & Ramaseshan, 1968a)

that for all acentric re¯ections

k1 �
�1 f 00

�2 f 00
� j

�1 F���j2 ÿ j�1 F�ÿ�j2
j�2 F���j2 ÿ j�2 F�ÿ�j2 �

�1 Idiff

�2 Idiff

: �7�

Hence, k1 is expressible as a ratio of experimentally measured

quantities. A least-squares-based method can be used to

estimate k1, noting that there are generally signi®cant un-

certainties in both the numerator and denominator of (7).

Under a Gaussian error model, the problem reduces (Moreno,

1996) to ®nding the value of k1 that minimizes

S�k1� �
PN
i�1

���1 Idiff�i ÿ k1��2 Idiff�i�2
��1�i�2 � k2

1��2�i�2
; �8�

where �1�i and �2�i are the estimated standard deviations of

��1 Idiff�i and ��2 Idiff�i, respectively, and the summation is over

all N available measurements. The minimization can be

performed by an iterative numerical procedure.

The estimation of

k2
2 �

�1 f 0 ÿ �2 f 0

�2 f 00

� �2

is not as straightforward. The approach suggested here is

based on the comparison of statistics calculated from centric

and acentric re¯ections. Hence, the procedure is not applic-

able in the triclinic space group P1 nor in the trigonal space

groups P3, P31, P32 and R3. These space groups have no

centrosymmetric projections and hence contain no centric

re¯ections.

First, the probability distributions for intensities ®rst

derived by Wilson (1949, 1950) are recalled. These provide an

approximate statistical description of the normal diffraction

from the anomalous scatterers (that is, for the quantities

j�FAj2).

For the acentric re¯ections

P�I� � �1=S� exp�ÿI=S�; �9�
while for the centric re¯ections

P�I� � �1=�2�IS�1=2� exp�ÿI=2S�: �10�
Here, S is a distribution parameter that can be written as

S = "�. The quantity � is the sum of the squared normal

scattering factors of the atoms in the structure. The factor "
corrects for differences in expected intensity owing to

crystallographic symmetry in certain zones and rows of the

reciprocal lattice and also for the effect of lattice centering

(see Wilson, 1950; Rogers, 1965; Iwasaki & Ito, 1977). Full

details are given in Srinivasan & Parthasarathy (1976). For our

purposes it is convenient to rewrite these probability density

functions in terms of the transformed variable Î = I/", since

this puts all re¯ections on a common statistical footing. Thus,

for the acentric re¯ections

P�Î� � �1=�� exp�ÿÎ=��; �11�
while for the centric re¯ections

P�Î� � �1=�2�Î��1=2� exp�ÿÎ=2��: �12�
Note that both the centric and acentric probability distribu-

tions are gamma distributions, having the characteristic form

P�x� � x�ÿ1 exp�ÿx=��
��ÿ��� ; �13�

where ÿ(�) is the gamma function, � is the shape parameter of

the distribution and � is the scale parameter. Considering

transformed intensities Î (11 and 12), for the centric distri-

bution � = 1
2 and � = 2�, while for the acentric distribution � = 1

and � = �. In both cases, the theoretical mean of the distri-

bution � = �� = �.

Applying (11) and (12) to describe the distribution of the

quantities (1/")j�FAj2, two expressions for the corresponding

quantity ��A will be developed involving the centric and

acentric re¯ections, respectively. These will be used to esti-

mate the ratio k2
2.

For the centric re¯ections, the geometric situation shown in

Fig. 1 is greatly simpli®ed. �FN and �FA are collinear and

Friedel's law is obeyed, so that j�F���j = j�F�ÿ�j (= j�Fj).

Hence, sin���N ÿ ��A� = 0 and j cos���N ÿ ��A�j = 1 and the

general expression for the diffracted intensity (4) simpli®es to



j�Fj2 � j�FNj � 1�
�f 0

�f

� �
j�FAj cos���N ÿ ��A�

� �2

�
�f 00

�f

� �2

j�FAj2

j cos���N ÿ ��A�j � 1

8>>>>>><>>>>>>:
�14�

Since j�FNj is in general much larger than j�FAj, the contri-

bution from the second term ��f 00=�f �2j�FAj2 to the diffracted

intensity is usually negligible compared with the contribution

fj�FNj � �1� ��f 0=�f ��j�FAj cos���N ÿ ��A�g2 from the ®rst

term.

Now consider the values taken by �j�1 Fj ÿ j�2 Fj�2. In

general, the resultant quantity depends on the magnitude and

phase of both �FN and �FA. It can be assumed that these

quantities are uncorrelated, since �FN and �FA are the sum of

numerous atomic contributions from two mutually exclusive

sets of atoms. It is then easy to show that for almost all centric

re¯ections

�j�1 Fj ÿ j�2 Fj�2 '
�1 f 0 ÿ �2 f 0

�f

� �2

j�FAj2:

The relation is approximate because the term ��f 00=�f �2j�FAj2
in (14) has been ignored. For the remainder of the centric

re¯ections

�j�1 Fj ÿ j�2 Fj�2 ' 2j�FAj �
�1 f 0 � �2 f 0

�f

� �
j�FAj ÿ 2j�FNj

� �2

:

This latter case only occurs when �FN and �FA are of opposite

phase [hence cos���N ÿ ��A� = ÿ1] and

�f
�f � �1 f 0

� �
j�FNj< j�FAj<

�f
�f � �2 f 0

� �
j�FNj

(where it is assumed, without loss of generality, that �2 f 0 < �1 f 0).

Recalling that the theoretical mean value of the quantities

�1 f 0 ÿ �2 f 0

�f

� �2
1

"
j�FAj2

is

�1 f 0 ÿ �2 f 0

�f

� �2

��A;

it will be a good approximation that

�1 f 0 ÿ �2 f 0

�f

� �2

��A�centric� ' �1="��j�1 Fj ÿ j�2 Fj�2
 �
: �15�

The Wilson probability distributions (11 and 12) are derived

under the assumption that the atomic scattering factors are

constant. As the effective atomic scattering factors (incor-

porating the effects of atomic displacements) are strongly

resolution-dependent, so too is the quantity ��A. Hence, ��A

must be determined in a number of thin concentric shells in

reciprocal space, over each of which it can be assumed

approximately constant.

A practical dif®culty with using (15) directly is that the

mean quantity h�1="��j�1 Fj ÿ j�2 Fj�2i is not robust to the

presence of outliers. A single large and aberrant measurement

can severely bias the estimate of ��A in a given resolution

shell. Hence, we replace the simple arithmetic mean in (15)

with a trimmed mean multiplied by an unbiasing factor, a

robust statistic for estimating the mean of a gamma-

distributed random variable suggested by Kimber (1983).

Given k2
1 and k2

2, we can estimate the same quantity ��A

from the acentric re¯ections as follows

�1 f 0 ÿ �2 f 0

�f

� �2

��A�acentric� � k2
2

1

"

�2 f 00

�f

� �2

j�FAj2
* +

; �16�

where ��2 f 00=�f �2j�FAj2 on the right-hand side of this expres-

sion is evaluated through (6). As before, we replace the simple

arithmetic mean on the right-hand side of the expression with

a robust estimator based on the trimmed mean.

Now we have two estimates for the same quantity

���1 f 0 ÿ �2 f 0�=�f �2��A. One is calculated directly from the

centric re¯ections via (15). The other is calculated from the

acentric re¯ections via (6) and (16) and assuming values for k2
1

and k2
2. A good estimate for k2

1 is already available through use

of (8). We can ®nd the `best' value of k2
2, in a least-squares

sense, by minimizing the squared difference between the two

estimates for ���1 f 0 ÿ �2 f 0�=�f �2��A.

The validity of the Wilson probability distributions depends

on the random distribution of a suf®ciently large number of

scatterers in general positions in the unit cell. If either of these

conditions is strongly violated (e.g. if there are a very small

number of anomalous scatterers in the unit cell or the

anomalous scatterers occupy special positions of the space

group), the method described for determining k2
2 may perform

unpredictably.

3. Application

We describe the application of this procedure to a real

problem, the structure determination of the N-terminal

domain of the Rous sarcoma virus (RSV) capsid protein (154

amino acids). Full details of the protein expression, puri®ca-

tion and crystallization and the collection of X-ray diffraction

data have been given elsewhere (Kingston et al., 2000)

Brie¯y, using a crystal of a selenomethionine (SeMet)

substituted protein maintained at 113 K, MAD data were

collected at wavelengths near the selenium K edge. The crystal

space group was P212121, with unit-cell parameters a = 40.5,

b = 64.5, c = 108.9 AÊ and two molecules within the asymmetric

unit. Each molecule contained ®ve selenomethionine residues.

Data were collected at ®ve wavelengths, four of which were

very close to the X-ray absorption edge (Table 1). The inverse-

beam method was used to accumulate the Friedel pairs at each

wavelength. Data collected at each wavelength were put on

the same relative scale using the program FHSCAL (Tickle,

1991). The X-ray absorption spectra of the frozen crystal was

aberrant and did not show the pronounced peak expected at

energies above the absorption edge. It is possible this effect

arose from photo-oxidation of the Se atoms (Smith &

Thompson, 1998; Sharff et al., 2000). The crystal used for

Acta Cryst. (2001). D57, 101±107 Kingston � Locating anomalous scatterers 105

research papers



research papers

106 Kingston � Locating anomalous scatterers Acta Cryst. (2001). D57, 101±107

MAD data collection had previously been exposed to high-

intensity X-rays and subsequently stored at liquid-nitrogen

temperatures. At the time of initial exposure, the X-ray

absorption spectra of the crystal appeared normal.

To calculate the structure-factor amplitudes of the anom-

alously scattering Se atoms, measurements made at �1 and �2

were used (Table 1), for which there is a large contrast in the

real part (�f 0) of the anomalous scattering factor. Because of

dif®culties calibrating the monochromator, �f 0 and �f 00 were

not accurately known at both of these

wavelengths. Using the procedures

described in x2.2 above, we estimated

k2
1 = 0.57 and k2

2 = 2.63 directly from

the X-ray diffraction data and used (6)

to calculate ��2 f 00=�f �2j�FAj2 for each

re¯ection. This resulted in estimates

for 94% of the possible re¯ections out

to 3.2 AÊ resolution.

For �1 (= 0.907 AÊ ), which is remote

from the absorption edge, the values

of the anomalous scattering factor will

be adequately described by theory

(Cromer, 1983). Taking �1 f 00 = 3.3 e

and with k1 = �1 f 00=�2 f 00 = 0.75, the

estimated value for �f 00 at the second

wavelength is �2 f 00 = 4.4 e. This value,

which is only slightly larger than the

theoretical value at the selenium K

edge (3.8 e), is consistent with the absence of pronounced

white-line enhancement seen in the X-ray absorption spectra

of the crystal.

Using the estimates for ��2 f 00=�f �2j�FAj2, the positions of

nine of the ten Se atoms were readily located using a direct-

methods procedure coupled with phase annealing (Sheldrick,

1990), as implemented in the program SHELXL97. In an

alternative approach, the same sites were located sequentially

using a Patterson-based translation function within the

program AMoRe (Navaza & Saludjian, 1997)

and a single atom as a search model (see

Vagin & Teplyakov, 1998).

In Fig. 2, a Patterson synthesis with

coef®cients ��2 f 00=�f �2j�FAj2, estimated as

described above, is compared with a synth-

esis with coef®cients �j�2 F���j ÿ j�2 F�ÿ�j�2,
the approximation suggested by Rossmann

(1961). Also shown are the anticipated

positions of the interatomic vectors resulting

from the Se atoms. As expected, the effect of

using the exact expression introduced by

Singh & Ramaseshan (1968a) (equation 6) in

place of the approximation suggested earlier

by Rossmann (1961) (equation 3) is to

suppress artifacts in the synthesis.

4. Summary

A method to recover the structure-factor

amplitudes of the anomalous scatterers from

MAD data collected at two wavelengths is

presented. The expression used is that of

Singh & Ramaseshan (1968a) and it is indi-

cated how it is derived from the standard

algebraic equations for analyzing MAD data.

It is shown how to proceed when the anom-

alous contributions �f 0 and �f 00 to the atomic

scattering factor are unknown. The calcula-

Figure 2
A comparison of Patterson syntheses. A Harker section (u = 0.5) of each synthesis is
displayed. (a) Calculated with coef®cients �j�2 F���j ± j�2 F�ÿ�j�2 (Rossmann, 1961). (b)
Calculated with coef®cients ��2 f 00=�f �2j�FAj2, estimated as described in this paper. The
positions of the predicted vector peaks resulting from the Se atoms, lying within 2.0 AÊ of the
displayed section, are also indicated. Self-vectors are marked with solid circles and cross-
vectors with solid crosses. Data to 3.2 AÊ resolution were used to compute the syntheses, which
were contoured in intervals of 0.5�, beginning at 1� (where � is the standard deviation of the
synthesis).

Table 1
Multiple-wavelength anomalous diffraction data for the N-terminal domain of the RSV capsid
protein.

Data were collected from a single frozen crystal at the Advanced Photon Source experimental station 14-
BM-d.

�1 �2 �3 �4 �5

Wavelength² (AÊ ) 0.907,
`remote'

0.978,
`peak'

0.978,
`in¯exion'

0.978,
`peak'

0.978,
`in¯exion'

Outer resolution limit for phasing (AÊ ) 2.7 2.7 2.7 2.7 2.7
Total observations 34201 35789 36048 35721 35725
Unique observations 8822 8883 8855 8887 8889
Completeness (%) 97 98 98 98 98
Rmeasure³: centric observations 0.034 0.037 0.036 0.034 0.035
Rmeasure³: acentric observations 0.048 0.056 0.038 0.064 0.046

² Dif®culties in calibrating the monochromator prevented accurate measurement of the wavelength. ³ j�F���j and
j�F�ÿ�j were treated as equivalent when calculating these statistics. Hence, differences between the centric observations
[where j�F���j = j�F�ÿ�j] and the acentric observations [where j�F���j 6� j�F�ÿ�j] re¯ect the size of the anomalous signal.
Rmeasure is the robust indicator of data consistency introduced by Diederichs & Karplus (1997). It is similar to the more
commonly reported Rmerge, but is not dependent on the redundancy of the data.



tions described have been implemented in a short computer

program which will be made available through the CCP4

program suite.
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